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10.1 Let ψ : Rn+1 → R be a smooth solution to the wave equation

□ηψ = 0 (1)

on (Rn+1, η). For any τ ∈ R, we will denote by E [ψ](τ) the total energy of ψ at time t = τ , i.e.

E [ψ](τ) .=
�
t=τ

(
(∂tψ)

2 + |∇xψ|2
)
dx.

(a) Using the energy inequality for the domain of a truncated cone that we established in
class, show that, if the initial data (ψ0, ψ1) =

(
ψ|t=0, ∂tψt=0

)
of ψ at t = 0 are compactly

supported, then for any τ ∈ R we have

E [ψ](τ) = E [ψ](0) =
�
t=0

(
ψ2
1 + |∇xψ0|2

)
dx.

(b) Show that the same equality is still true if (ψ0, ψ1) are not necessarily compactly supported,
but satisfy �

t=0

(
ψ2
1 + |∇xψ0|2

)
dx < +∞.

(Hint: Apply the energy identity on a sequence of truncated cones of increasingly large
radius R. In order to estimate the corresponding integral on the conical side S of the
domain ans show that it goes to 0 R → +∞, apply the energy identity on a di�erent but
appropriately chosen domain which is contained in {1

2
R ⩽ |x| ⩽ R}.)

10.2 (a) Let T > 0 be a positive number. Show that there exists some CT > 0 depending only
on T such that the following estimate holds for any solution ψ of (1) on (Rn+1, η) with
compactly supported initial data at {t = 0}:

sup
τ∈[0,T ]

(
E [ψ](τ) +

�
t=τ

ψ2 dx
)
⩽ CT ·

(
E [ψ](0) +

�
t=0

ψ2 dx
)
. (2)

Note that the above estimate should be viewed as an energy-type inequality which includes
lower order terms.

(Hint: In order to prove the inequality for the second term in the left hand side, start by
using the expression

�
t=τ

ψ2 dx =
� τ

0

�
t=s

∂t(ψ
2) dxds+

�
t=0

ψ2 dx. Then apply a Cauchy�
Schwarz inequality for the spacetime integral and use Gronwal's inequality.)

*(b) For any integrable function f : Rn → C, we will denote its Fourier transform by f̂ , i.e.

f̂(ξ)
.
=

�
Rn

e2πi⟨ξ,x⟩f(x) dx.
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For a function ψ on Rn+1, we will similarly denote by ψ̂ its Fourier transform with respect
to the space variables x. If ψ solves (1), show that ψ̂(t, ξ) solves the following ODE in
time:

∂2t ψ̂(t, ξ) + |ξ|2ψ̂(t, ξ) = 0.

Deduce that, in terms of the initial data (ψ0, ψ1) at t = 0, ψ can be expressed via the
relation

ψ̂(t, ξ) = cos(|ξ|t)ψ̂0(ξ) +
sin(|ξ|t)

|ξ|
ψ̂1(ξ).

Using the above expression, show that, in the case when the space dimension satis�es
n ⩾ 2, for any solution ψ arising from smooth and compactly supported initial data which
satisfy ψ0 = 0 and ψ̂1(0) ̸= 0, we have

lim sup
τ→±∞

�
t=τ

|ψ|2 dx = +∞.

In particular, the estimate (2) cannot hold with a constant CT which is uniformly bounded
in T > 0 (unlike the simplest energy identity).

10.3 Consider the wave-type equation

□ηϕ+ Aµ∂µϕ+Bϕ = 0

on R
n+1, with A a smooth vector �eld on R

n+1 and B ∈ C∞(Rn+1). For any 0 < T ⩽ R,
consider the truncated spacetime cone

ΩT,R =
⋃

τ∈[0,T ]

{τ} ×BR−τ .

Show that the modi�ed energy

Ẽ [ϕ](τ) =
�
{t=τ}×BR−τ

(
(∂tϕ)

2 + |∇xϕ|2 + |ϕ|2
)
dx

satis�es the analogue of (2), i.e.

Ẽ [ϕ](τ) ⩽ CT,RẼ [ϕ](0).

for some CT,R ⩾ 0 depending only on T,R and the precise form of A,B. Deduce that ϕ = 0 on
the whole of KT,R if (ϕ, ∂tϕ)|{0}×BR

= 0.

(Hint: Starting from the energy identity as we did in class for □ηϕ = 0, show that Ẽ [ϕ](τ)
satis�es a Gronwall-type inequality; see also Ex. 10.2.)
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10.4 Let us consider the Schwarzschild exterior spacetime (M, gM) (i.e. region I of the maximal
extension) in the (t∗, r, θ, ϕ) coordinate system of Exercise 8.2 (with r ∈ (2M,+∞)). Recall,
that these coordinates are smooth across the future event horizon and the Schwarzschild metric
takes the form

gM = −
(
1− 2M

r

)
(dt∗)2 +

4M

r
dt∗dr +

(
1 +

2M

r

)
dr2 + r2

(
dθ2 + sin2 θdϕ2).

(a) Show that the hypersurfaces {t∗ = const} are spacelike and compute their future directed
unit normal vector �eld n̂. Setting

u = e2M log(r−2M)−t∗ ,

show also that the hypersurfaces {u = ϵ}, for ϵ > 0 su�ciently small, are spacelike. What
is the hypersurface {u = 0}? For T, ϵ > 0, sketch the domain {u ⩾ ϵ} ∩ {0 ⩽ t∗ ⩽ T} on
the Penrose diagram.

(b) Let ψ be a smooth solution of the wave equation □gMψ = 0. Compute the coordinate
expression of the energy �ux E [ψ](τ) =

�
{t∗=τ} J

(∂t∗ )[ψ]µn̂
µ.

(c) Show that E [ψ](τ) is non-increasing in τ . (Hint: Apply the divergence identity for divJ (∂t∗ )

in regions of the form {τ1 ⩽ t∗ ⩽ τ2} ∩ {u > ϵ} as ϵ→ 0.)
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